FANDOM


Allgemeines

Ein "Weißer Zwerg" ist ein Stern, der trotz seiner durch die Spektralklasse angezeigten hohen Oberflächentemperatur eine sehr kleine Leuchtkraft aufweist, im Hertzsprung-Russel-Diagramm also weit unterhalb der Hauptreihe liegt. Der hohen Temperatur verdankt er seine weiße Farbe, der geringen Leuchtkraft – welche auf eine entsprechend kleine Oberfläche hinweist – seine Bezeichnung „Zwerg“. Zur Problematik, was beim Fehlen einer festen Kruste eigentlich unter einer Sternoberfläche zu verstehen ist, sei auf den entsprechenden Artikel verwiesen.

Ein solcher Stern wird als das Endstadium der Entwicklung eines relativ massearmen Sterns gedeutet, dessen nuklearer Energievorrat versiegt ist. Er entwickelt sich aus einem Roten Riesen, der seine äußere Hülle abstößt, so dass dessen heißer Kern zurückbleibt. Voraussetzung dafür ist, dass die Restmasse unterhalb eines Schwellenwertes von 1,44 Sonnenmassen, der sogenannten Chandrasekhar-Grenze, bleibt. Anderenfalls entsteht ein Neutronenstern oder (bei einer Kernmasse von mehr als etwa 3 Sonnenmassen) gar ein Schwarzes Loch.


Spektrum und Helligkeit

Aus dem Spektrum und der Helligkeit lassen sich sofort einige wichtige Merkmale Weißer Zwerge ableiten. Kennt man die Entfernung eines solchen Sterns, zum Beispiel anhand der jährlichen Parallaxe, so gibt die Helligkeit unmittelbar Auskunft über die Leuchtkraft. Das Spektrum wiederum zeigt die Oberflächentemperatur an. Zahlreiche solcher Beobachtungen sind bereits durchgeführt worden, als Beispiele seien die in nachfolgendem Diagramm dargestellten Ergebnisse von Bergeron et al. (2001) und Liebert et al. (2005) genannt. Liebert et al. (2005) untersuchten Weiße Zwerge hoher Oberflächentemperatur, also klassische Vertreter dieses Sterntyps, wohingegen Bergeron et al. (2001) sich auf kühle Weiße Zwerge konzentrierten. Solche Objekte werden als alte Weiße Zwerge gedeutet, die bereits eine lange Abkühlungszeit von mehreren Milliarden Jahren hinter sich haben.

Bei sehr heißen weißen Zwergen liegt das Leuchtkraftdefizit etwa bei einem Faktor 100.000, bei sehr kühlen etwa bei einem Faktor von 1 000. Bei gleicher Oberflächentemperatur entspricht dem Unterschied an Leuchtkraft ein gleich großer an Oberfläche. Weiße Zwerge haben also tausend- bis millionenfach kleinere Oberflächen als Hauptreihensterne, das bedeutet 30- bis 300fach kleinere Radien. Ein Weißer Zwerg ist also nur etwa so groß wie die Erde. Dieses kleine Volumen – nur etwa ein Millionstel des Sonnenvolumens – enthält aber etwa eine Sonnenmasse, was zu einer mittleren Dichte von etwa einer Tonne pro cm3 führt. Mit einem kirschgroßen Stück eines Weißen Zwerges ließe sich also etwa ein Auto aufwiegen. Aus der enorm starken Massekonzentration folgt weiter eine sehr hohe Fallbeschleunigung an der Oberfläche. Die Oberflächenschwere ist der Masse eines Himmelskörpers direkt und dem Quadrat von dessen Radius umgekehrt proportional. Mit einer Sonnenmasse – entsprechend etwa 300 000 Erdmassen – auf Erdvolumen komprimiert erhält man eine Fallbeschleunigung, welche die irdische um etwa das 300.000fache übersteigt.


Spektrallinien und Rotverschiebung

Um die Oberflächenschwere eines Sterns zu ermitteln, muss man dessen Masse jedoch keineswegs kennen, sie kann auch direkt aus dem Spektrum abgeleitet werden. Bei hoher Fallbeschleunigung unterliegt nämlich nicht nur das Sterninnere, sondern auch noch die Photosphäre einem hohen Druck, was aufgrund häufiger Stöße zwischen den Teilchen zu einer Verbreiterung der Spektrallinien führt (sogenannte Druckverbreiterung). Die hohe Gravitation auf der Oberfläche Weißer Zwerge zieht noch einen weiteren, für die Untersuchung solcher Sterne äußerst nützlichen Effekt nach sich. Nach der Allgemeinen Relativitätstheorie tritt eine an für sich klar messbare Rotverschiebung auf (siehe zum Beispiel Greenstein et al. (1971)). In der Praxis tritt jedoch aufgrund der Eigenbewegung des Sterns eine zusätzliche Wellenlängenverschiebung der Spektrallinien hinzu, welche vom Dopplereffekt herrührt. Die von der Oberflächenschwere herrührende Rotverschiebung ist direkt proportional zur Hubarbeit, welche das Licht gegen das Gravitationsfeld verrichten muss. Diese aber ist wieder direkt proportional der Masse des Sterns und umgekehrt proportional zu dessen Radius. Kombiniert man dies mit der Fallbeschleunigung – welche ja ebenfalls von der Masse und dem Radius des Sterns abhängt – so lassen sich diese beiden Größen einzeln bestimmen.

Beispiel: Sirius B

Ein typischer Weißer Zwerg ist Sirius B, der Begleiter des Sirius. Obwohl schon lange als ungewöhnliches Objekt identifiziert, ist er weiterhin Gegenstand von Untersuchungen. Seine Eigenbewegung ist genau bekannt, so dass die Wellenlängenverschiebungen durch den Dopplereffekt und die Rotverschiebung im Schwerefeld sicher getrennt werden können. Ebenso ist seine Entfernung genau bekannt, so dass Helligkeitsmessungen eine sichere Auskunft über die Leuchtkraft geben. Eine aktuelle Untersuchung stammt von Barstow et al.(2005), welche Sirius B mit dem Hubble Space Telescope beobachteten. Dieses ist aufgrund seines sehr hohen Auflösungsvermögens in der Lage, Sirius B von dem sehr viel helleren, nur wenige Bogensekunden entfernt stehenden Hauptstern zu trennen. Die Autoren geben für Sirius B eine Oberflächentemperatur von etwa 25.200 K an. Während ein so heißer Hauptreihenstern etwa 10.000fach leuchtkräftiger ist als die Sonne, ist die absolute Helligkeit des Sirius B sehr gering. Im sichtbaren Bereich liegt sie gerade einmal bei der Größenklasse 11,43, wohingegen es die Sonne auf die Größenklasse 4,83 bringt. Für den Radius von Sirius B finden Barstow et al.(2005) auf Grundlage der Rotverschiebung einen Wert von etwa 0,00864 Sonnenradien, was 6000 km entspricht. Er ist also etwas kleiner als die Erde. Dennoch weist er ca. 0,978 Sonnenmassen auf. Die Oberflächenschwere ist den Autoren zufolge etwa 375.000 mal höher als auf der Erde. Die von Barstow et al.(2005) gemessene Rotverschiebung aufgrund der Gravitation ist gleichwertig einer Dopplerverschiebung bei einer Geschwindigkeit von etwa 80 km/s. In dem von den Autoren untersuchten Bereich von 380 bis 510 nm beträgt die entsprechende Wellenlängenverschiebung etwa 0,1 nm, ein geringer, aber mit einem hochauflösenden Spektrographen leicht nachweisbarer Betrag.


Klassische Weiße Zwerge

Realistische Szenarien für die Verteilung der Materie in Weißen Zwergen liefern zum Beispiel die Arbeiten von Corsico et al.(2001), Althaus et al.(2004) und Althaus et al.(2005). Während im Stadium des Roten Riesen aufgrund weiträumiger Konvektionsströmungen eine erhebliche Durchmischung des Sterninneren auftreten kann, werden in einem Weißen Zwerg die chemischen Elemente sehr stark nach ihrem Atomgewicht getrennt. Ohne nukleare Energieerzeugung stellt sich laut Hansen (2004) im Kern kein ausreichendes Temperaturgefälle mehr ein, um die Konvektion dort noch aufrecht zu erhalten. Somit können die schweren Atomkerne relativ ungestört zum Zentrum hin absinken. Es bildet sich ein Kern heraus, dessen innerer Teil nach Corsico et al.(2001) von Sauerstoff und dessen äußerer Teil von Kohlenstoff dominiert wird. Leichtere Elemente fehlen im Kern nahezu ganz. Nach außen schließt sich eine Schicht an, die fast nur Helium enthält. Diese muss man sich als dünn vorstellen, gemäß den hier zitierten Arbeiten beträgt ihre Masse nur etwa 0,0001 bis 0,01 Sonnenmassen. Bei etwa 20% aller Weißen Zwerge bildet die Heliumschicht die äußerste Zone. Etwa 80% aller Weißen Zwerge besitzen jedoch zusätzlich eine Schicht aus praktisch reinem Wasserstoff. Diese ist noch dünner als die Heliumschicht, ihre Masse liegt nur bei etwa 0,000001 bis 0,0001 Sonnenmassen. Nahezu die gesamte Masse – mindestens 99% – ist also im Sauerstoff-Kohlenstoff-Kern vereint. Dass die Photosphäre eines Weißen Zwerges sehr dünn sein muss, wird klar, wenn man die ungeheure Oberflächenschwere auf die barometrische Höhenformel anwendet. Diese besagt, dass der Atmosphärendruck exponentiell mit einer Skalenhöhe nach außen abfällt bzw. nach innen ansteigt. Setzt man für m die Atommasse von Wasserstoff, und für die Oberflächentemperatur T und Fallbeschleunigung g die Werte von Sirius B ein, so erhält man eine Skalenhöhe von nur 56 m (k steht für die Boltzmann-Konstante). Dieses Ergebnis besagt, dass mit zunehmender Tiefe auf einer Längenskala von kaum mehr als 100 m der Druck um das 10 fache ansteigt. Schon in einer Tiefe von nur wenigen Kilometern ist also eine enorme Verdichtung der Materie erreicht.


Besondere Typen

Nicht alle Weißen Zwerge folgen dem hier skizzierten Aufbau. Einige Sterne dieses Typs besitzen keinen Kern aus Sauerstoff und Kohlenstoff, sondern nur aus Helium. Diese Objekte widersprechen scheinbar der gängigen Theorie der Sternentwicklung. Einzelsterne, bei denen im Verlauf ihrer Entwicklung die Fusion von Helium zu Kohlenstoff ausbleibt, weisen Scheffler und Elsässer (1990) zufolge eine Masse von maximal 0,5 Sonnenmassen auf. Die Lebensdauer solch massearmer Sterne liegt aber bei mindestens 20 Milliarden Jahren, so dass sich aus solchen noch gar keine Weißen Zwerge gebildet haben können. Nach Althaus und Benvenuto (1997) sowie Serenelli et al. (2002) ist in sehr engen Doppelsternsystemen aber eine genügend schnelle Entstehung von heliumdominierten Weißen Zwergen möglich. In solchen Systemen üben die Sterne starke Gezeitenkräfte aufeinander aus, was in der Phase des Aufblähens zum Roten Riesen einen hohen Masseverlust nach sich ziehen kann. Auf diese Weise kann auch die Entwicklung eines relativ massereichen, das heißt ausreichend kurzlebigen Sterns, in einen Weißen Zwerg mit Heliumkern münden.

Umgekehrt wurden kürzlich Weiße Zwerge gefunden, die nur noch aus Kohlenstoff (und Sauerstoff) bestehen, also auch keine Heliumhülle mehr besitzen. Erstmalig wurden solche Objekte von Dufour et al.(2007) beschrieben. Montgomery et al.(2008) führten erste detaillierte Berechnungen durch, in welchen sie das Objekt SDSS J142625.71+575218.3 als Prototyp der neuen Sternklasse definierten. Zudem zeigten sie, dass auch diese Sterne pulsieren können. Althaus et al.(2009) schlugen bereits einen Mechanismus vor, der das Fehlen der Heliumschicht erklären könnte. Wie im Abschnitt „instabile Weiße Zwerge“ beschrieben wird, können Weiße Zwerge unter bestimmten Bedingungen sich wieder in Riesen verwandeln. Bei diesem zweiten Durchlauf eines Riesenstadiums büßen die Sterne die Heliumhülle ein.


Instabile Weiße Zwerge

Obwohl Weiße Zwerge in ihrem Kern nicht mehr über nukleare Energiequellen verfügen, können sie durchaus noch eine erhebliche, ja eruptive Aktivität zeigen. Dies gilt vor allem dann, wenn sie Mitglieder enger Doppelsternsysteme sind.


Novae

Lange Zeit wurden Novae als leuchtschwache Abart der Supernovae betrachtet, als Sternexplosionen mit einem nicht ganz so extremen Helligkeitsausbruch. Erst in den 1970er Jahren wurde die allerdings bereits von Otto von Struve aufgestellte Hypothese bestätigt, dass der Ursprung einer Nova in einem sehr engen Doppelsternsystem zu suchen ist, das aus einem Weißen Zwerg und einem kühlen Hauptreihenstern besteht. Hier wird nur eine kurze Beschreibung des Phänomens gegeben, hinsichtlich der Einzelheiten sei auf den entsprechenden Artikel verwiesen.

In einem genügend engen Doppelsternsystem erstreckt sich der Hauptreihenstern bis zum Librationspunkt, so dass Gas von diesem in den Anziehungsbereich des Weißen Zwerges gelangen kann. Es bildet sich ein permanenter Materiestrom und als Folge dessen eine Gasscheibe um den Weißen Zwerg herum aus. Diese macht sich durch ein Emissionsspektrum bemerkbar, das vor allem Linien des Wasserstoffs (Balmerserie), aber auch des Heliums aufweist.

Hat sich eine gewisse kritische Menge an Gas angesammelt, tritt ein explosionsartiges Wasserstoffbrennen auf. In dessen Verlauf wird die Gasscheibe abgestoßen (der Weiße Zwerg selbst explodiert jedoch nicht!), was von einem enormen Helligkeitsausbruch begleitet ist. Nach dem Ausbruch kehrt das System zu seiner ursprünglichen Helligkeit zurück, und es kann sich eine neue Gasscheibe bilden. Auf diese Weise ist auch eine Wiederholung des Novageschehens mit von System zu System sehr unterschiedlichen Zeitabständen möglich.


Supernovae

Die von einem Weißen Zwerg in einem engen Doppelsternsystem aufgesammelte Materie wird durch eine Nova nur teilweise abgestoßen, insbesondere bleiben durch das Wasserstoffbrennen erzeugte schwerere Kerne zurück. Dies bedeutet, dass seine Masse auf Kosten des Begleitsterns im Laufe der Zeit mehr und mehr zunimmt. Wird die Chandrasekhar-Grenze überschritten, beginnt der Weiße Zwerg zu kollabieren. Dabei setzt ein explosionsartiges Kohlenstoffbrennen ein, welches die Entstehung eines Neutronensterns unterbindet. Stattdessen detoniert der Weiße Zwerg vollständig, ohne einen Reststern zu hinterlassen, während der nun nicht mehr gravitativ gebundene Begleitstern davongeschleudert wird. Auch hier sei hinsichtlich der Einzelheiten auf den entsprechenden Artikel verwiesen.


Wiedergeborene Riesen

Am 20.Februar 1996 entdeckte der Japaner Yukio Sakurai im Sternbild Schütze einen "neuen" Stern, der zunächst als Nova eingestuft wurde. Es stellte sich jedoch heraus, dass mit Sakurais Stern - auch als V4334 Sgr bezeichnet - ein extrem seltener Sterntyp zutage getreten war, für den es mit V605 Aql im Sternbild Adler und FG Sge im Sternbild Pfeil nur zwei weitere gesicherte Exemplare gibt.

Sakurais Stern war bei seiner Entdeckung ein Objekt etwa 11. Größe. Eine nachträgliche Überprüfung älterer photographischer Aufnahmen zeigte diesen dort als extrem schwach oder gar nicht nachweisbar an, d.h. vor dem Ausbruch lag seine Helligkeit unterhalb der 20. Größenklasse. Ein auf manchen dieser Aufnahmen extrem schwach angedeuteter Planetarischer Nebel konnte schon bald nach dem Helligkeitsausbruch von Duerbeck und Benetti (1996) bestätigt werden. Damit war gesichert, dass Sakurais Stern aus einem sehr jungen Weißen Zwerg hervorgegangen war. Schon die ersten Spektren (siehe ebenfalls Duerbeck und Benetti (1996)) ließen erkennen, dass keine Nova vorlag. Sie zeigten eine Photosphäre mit abnorm schwachen Spektrallinien des Wasserstoffs, andererseits mit ungewöhnlich starken des Kohlenstoffs und Sauerstoffs. Damit war ausgeschlossen, dass der Helligkeitsausbruch durch das Wegsprengen einer Wasserstoffhülle hervorgerufen war. Trotz der Besondersheiten erinnerten die Spektren an Überriesen der Spektralklasse F.

Die Beobachtungen konnten rasch als sogenannter Helium-Flash gedeutet werden, worunter man ein explosionsartiges Einsetzen des Heliumbrennens in der Spätphase der Entwicklung sonnenähnlicher Sterne versteht. Zuerst ereignet sich dieses im Kern des bereits zum Roten Riesen gewordenen Sterns. Hat sich dort das Helium zu Kohlenstoff und Sauerstoff umgewandelt, treten Helium-Flashs auch in der sich dem Kern anschließenden Schicht auf. Eben dieses explosionsartig einsetzende Heliumschalenbrennen ist dafür verantwortlich, dass der Rote Riese seine Hülle weitestgehend abwirft. Sakurais Stern zeigt, dass ein Helium-Flash auch nach diesem Abwurf noch stattfinden kann, wenn der Stern schon unmittelbar vor der Abkühlungsphase als Weißer Zwerg steht. Damit aber wird aus diesem wieder ein Riese. Diesem wiedergeborenen Giganten steht selbstverständlich nur noch eine geringe Menge an zu verbrennendem Helium zu Verfügung, so dass er sich nur kurze Zeit erneut in diesem Zustand behaupten kann. Die Entwicklung von Sakurais Stern seit 1996 liefert hierfür ein besonders extremes, in seiner Art erstmalig beobachtetes Beispiel.

Schon bald nach seiner Entdeckung wurde Sakurais Stern erheblich röter, während seine visuelle Helligkeit zunächst stabil blieb. Dies deutete auf eine starke Abkühlung der Photosphäre hin. Spektren, wie sie z.B. von Arkhipova et al. (1998) aufgenommen wurden, zeigten zudem an, dass sich die Dominanz des Kohlenstoffs verstärkt hatte, sie waren nun z.T. vollständig von molekularem Kohlenstoff dominiert. Von Mitte 1998 an begann die visuelle Helligkeit des Sterns dramatisch abzufallen, bis Mitte 1999 war die 22. Größenklasse erreicht. Gleichzeitig stieg im Infraroten die Helligkeit sehr stark an. Offensichtlich hatte der Stern große Mengen an Kohlenstoff, Sauerstoff und anderen Elementen ausgestoßen, welche nun zu einer Staubhülle kondensierten, die praktisch alles sichtbare Licht absorbierte und die aufgenommene Energie im Infraroten wieder abgab (siehe Duerbeck (2002)). Diese Staubhülle verbirgt Sakurais Stern bis heute.

Indirekte Hinweise auf dessen weitere Entwicklung sind jedoch gegeben, z.B. in Form von Emissionslinien, die von ionisierten Elementen stammen. Zwar können auch Schockwellen, die durch den Materieausstoß ausgelöst wurden, eine Ionisation innerhalb der Staubhülle bewirken. Van Hoof et al. (2007) legten jedoch dar, dass das beobachtete Ausmaß nur erklärt werden kann, wenn man gleichzeitig auch von einer energiereichen Strahlung des Sterns ausgeht. Das aber bedeutet, dass er in den letzten Jahren wieder erheblich heißer geworden sein muss. Nur 13 Jahre nach der Wiedergeburt als Riese entwickelt er sich also abermals zum Weißen Zwerg.

V605 Aql, welcher um 1919 einen großen Helligkeitsausbruch zeigte, durchlief eine vergleichbar dramatische Entwicklung wie Sakurais Stern. Glücklicherweise existieren Spektren recht guter Qualität aus dieser Zeit (Lundmark (1921)), so dass sich zusammen mit modernen Messungen das seitdem erfolgte Geschehen rekonstruieren lässt (siehe Clayton und De Marco (1997)). Nicht ganz so rasch verläuft die Entwicklung von FG Sge, doch im Laufe der Jahrzehnte hat auch dieser Stern massive Variationen von Helligkeit, Farbe und Spektrum gezeigt (Lawlor and McDonald (2003)).


Sonstiges

Häufigkeit

Weiße Zwerge sind recht häufige Objekte. Laut Sion et al. (2009) finden sich im Umkreis von 20 Parsec um die Sonne insgesamt 129 derartige Sterne, was einem mittleren Abstand von etwa 6 Parsec bzw. etwa 19 Lichtjahren zwischen zwei Weißen Zwergen entspricht. Man schätzt, dass etwa 10% aller Sterne Weiße Zwerge sind. Insgesamt sind etwa 10000 solcher Objekte bekannt. Durch systematische Himmelsdurchmusterungen wie den Sloan Digital Sky Survey wird diese Zahl aber schon in den nächsten Jahren stark ansteigen.


Weiße Zwerge aus massereichen Sternen?

Im Gegensatz zur vorherrschenden Theorie, wonach Weiße Zwerge nur aus relativ massearmen Sternen hervorgehen können, schlugen Meynet et al. (1994) folgendes spektakuläre Szenario vor. Weist ein sehr massereicher Stern (um die 100 Sonnenmassen) einen sehr hohen Anteil von Elementen schwerer als Helium auf (mehr als das Doppelte im Vergleich zur Sonne), so erleidet dieser im Verlauf seiner Entwicklung einen extremen Masseverlust. Der hohe Anteil schwerer Elemente macht die Sternmaterie weitgehend undurchsichtig, wodurch die Wirkung des ohnehin schon enormen Strahlungsdrucks noch verstärkt wird. Dadurch kann der Stern so viel Masse verlieren, dass er am Ende noch unterhalb der Chandrasekhar-Grenze bleibt! Diesem Szenario zufolge müsste es sehr junge Sternhaufen (welche an blauen, leuchtkräftigen Hauptreihensternen zu erkennen sind) mit Weißen Zwergen geben. Die Suche nach solchen Haufen ist bislang aber erfolglos geblieben.


Doppelsternsysteme Weißer Zwerge und Gravitationswellen

Doppelsternsysteme mit Weißen Zwergen stellen mögliche Quellen für Gravitationswellen dar, welche man mit dem geplanten weltraumgestützten Gravitationswellendetektor LISA nachzuweisen hofft (Stoerer und Veitch (2009)). Die von solchen Systemen abgestrahlten Gravitationswellen sollen durch ihre charakteristische Frequenz von anderen kompakten Quellen wie Pulsaren und Schwarze Löcher unterscheidbar sein.


Anmerkungen

  • Quelle: WIKIPEDIA